Radiation damage is a significant challenge in macromolecular crystallography, especially with the advent of high-brightness synchrotron sources. This beginner’s guide explores the fundamental aspects of radiation damage, its impact on structural determination, and strategies to mitigate its effects, enabling more accurate and reliable structural models.
The Nature of Radiation Damage
Radiation damage in crystals arises from the interaction of X-rays with the sample. When X-rays interact with matter, they cause ionization and excitation of atoms. In the context of macromolecular crystals, this energy absorption leads to the formation of free radicals and other reactive species. These highly reactive molecules then attack the macromolecules within the crystal, causing various forms of damage.
Types of Radiation Damage
There are two broad categories of radiation damage:
-
Specific Damage: This type of damage involves the direct interaction of X-rays with specific chemical bonds, leading to their breakage. For example, disulfide bonds are particularly susceptible to specific damage.
-
Non-Specific Damage: This involves the indirect effects of radiation, mediated by secondary species such as free radicals. This type of damage can affect a wide range of chemical bonds and amino acid residues.
Schematic of an X-ray diffraction experimental setup for macromolecular crystallography, illustrating the interaction of X-rays with the crystal and subsequent diffraction pattern.
Consequences of Radiation Damage
The consequences of radiation damage are diverse and can significantly impact the quality of crystallographic data. Some common effects include:
- Loss of Diffraction Resolution: As the crystal is exposed to radiation, the overall order within the crystal lattice decreases. This manifests as a reduction in the intensity of high-resolution reflections, effectively limiting the resolution of the data.
- Changes in Unit Cell Parameters: Radiation damage can cause subtle changes in the unit cell dimensions of the crystal, affecting data processing and merging.
- Increased Mosaic Spread: The mosaic spread, which reflects the degree of disorder within the crystal, tends to increase with radiation exposure.
- Introduction of Artifacts: Changes in electron density, particularly around sensitive residues such as cysteines, can introduce artifacts into the structural model.
Factors Influencing Radiation Damage
Several factors influence the rate and extent of radiation damage in macromolecular crystals.
Wavelength
The wavelength of the X-rays used for diffraction plays a crucial role in radiation damage. Shorter wavelengths (higher energy) tend to cause more ionization events, leading to increased radical production and, consequently, more damage.
Temperature
Crystals are often cryo-cooled to reduce radiation damage, but very low temperature can lead to other problems.
Chemical Composition
The chemical composition of the crystal environment also plays a role. The presence of reducing agents, such as dithiothreitol (DTT) or tris(2-carboxyethyl)phosphine (TCEP), can scavenge free radicals, mitigating the effects of radiation damage.
Strategies for Mitigating Radiation Damage
Given the pervasive nature of radiation damage, various strategies have been developed to minimize its impact on structural determination.
Cryo-cooling
Cooling crystals to cryogenic temperatures (typically around 100 K) dramatically reduces the mobility of free radicals, slowing down the chemical reactions that lead to damage. This is the most widely used method for mitigating radiation damage.
Illustration of a cryocooled protein crystal, showing the reduction in atomic mobility at low temperatures, which helps to minimize radiation damage.
Crystal Treatment
Soaking crystals in solutions containing cryoprotectants, such as glycerol or polyethylene glycol (PEG), can improve their resistance to radiation damage. In addition, adding radical scavengers to the cryoprotectant solution can further reduce damage.
Data Collection Strategies
Optimizing data collection strategies can also help minimize radiation damage. These strategies include:
- Multi-Crystal Method: Collecting data from multiple crystals and merging the data sets allows for lower doses per crystal, reducing overall damage.
- Wedge Method: Collecting data in narrow wedges of oscillation can minimize the exposure time for each part of the crystal.
Anomalous Diffraction Techniques
Using anomalous diffraction techniques, such as single-wavelength anomalous diffraction (SAD) or multi-wavelength anomalous diffraction (MAD), can help determine structures from data collected with lower doses of radiation.
Assessing Radiation Damage
It is important to monitor the progression of radiation damage during data collection to ensure the quality of the final structural model. Several methods can be used to assess the extent of damage.
Monitoring Diffraction Quality
The most straightforward method is to monitor the diffraction quality as data collection proceeds. This can be done by tracking the resolution limit, the intensity of high-resolution reflections, and the overall mosaicity of the crystal.
R-factor Analysis
The R-factor (residual factor) is a measure of the agreement between the observed and calculated diffraction intensities. An increase in the R-factor can indicate the onset of radiation damage.
Isotropic B-factor analysis
The isotropic B-factor is a parameter that describes the average displacement of atoms from their mean positions. An increase in the overall B-factor can be indicative of radiation damage.
Occupancy Refinement
Monitoring changes in the occupancy of specific residues, such as cysteines, can provide insights into the progression of specific damage.
Advanced Techniques
More advanced methods, such as serial femtosecond crystallography (SFX), are being developed to outrun radiation damage.
Serial Femtosecond Crystallography (SFX)
In SFX, a stream of nanocrystals is hit with extremely short, intense X-ray pulses from an X-ray free-electron laser (XFEL). Diffraction data is collected before the crystal is destroyed. SFX allows structure determination free from radiation damage at room temperature, offering new insights into protein dynamics and function.
Conclusion
Radiation damage remains a challenge in macromolecular crystallography, but its effects can be mitigated through careful experimental design and data collection strategies. By understanding the nature of radiation damage and employing appropriate techniques, it is possible to obtain high-quality structural data, leading to more accurate and reliable structural models. This beginner’s guide provides a foundation for understanding and addressing radiation damage, enabling researchers to push the boundaries of structural biology.
References
- Azároff, L. V. (1955). Acta Cryst. 8, 701–704.
- Banumathi, S., Zwart, P. H., Ramagopal, U. A., Dauter, M. & Dauter, Z. (2004). Acta Cryst. D60, 1085–1093.
- Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids Res. 28, 235–242.
- Blake, C. & Phillips, D. C. (1962). Proceedings of the Symposium on the Biological Effects of Ionizing Radiation at the Molecular Level, Vienna, Austria, pp. 183–191.
- Blundell, T. & Johnson, L. N. (1976). Protein Crystallography. London: Academic Press.
- Borek, D., Ginell, S. L., Cymborowski, M., Minor, W. & Otwinowski, Z. (2007). J. Synchrotron Rad. 14, 24–33.
- Bourenkov, G. P. & Popov, A. N. (2006). Acta Cryst. D62, 58–64.
- Box, H. R. (1977). Radiation Effects: ESR and ENDOR Analysis. London: Academic Press.
- Burmeister, W. P. (2000). Acta Cryst. D56, 328–341.
- Carugo, O. & Carugo, K. D. (2005). Trends Biochem. Sci. 30, 213–219.
- Chinte, U., Shah, B., Chen, Y.-S., Pinkerton, A. A., Schall, C. A. & Hanson, B. L. (2007). Acta Cryst. D63, 486–492.
- Cole, A. (1969). Radiat. Res. 38, 7–33.
- Corbett, M. C., Latimer, M. J., Poulos, T. L., Sevrioukova, I. F., Hodgson, K. O. & Hedman, B. (2007). Acta Cryst. D63, 951–960.
- Coulibaly, F., Chiu, E., Ikeda, K., Gutmann, S., Haebel, P. W., Schulze-Briese, C., Mori, H. & Metcalf, P. (2007). Nature (London), 446, 97–101.
- Darwin, C. G. (1914). Philos. Mag. 27, 315.
- Douzou, P. (1977). Cryobiochemistry: An Introduction. New York: Academic Press.
- Drenth, J. (1999). Principles of Protein Crystallography, p 109. New York: Springer-Verlag.
- Dubnovitsky, A. P., Ravelli, R. B. G., Popov, A. N. & Papageorgiou, A. C. (2005). Protein Sci. 14, 1498–1507.
- Evans, P. (2006). Acta Cryst. D62, 72–82.
- Facciotti, M. T., Cheung, V. S., Nguyen, D., Rouhani, S. & Glaeser, R. M. (2003). Biophys. J. 85, 451–458.
- Fioravanti, E., Vellieux, F. M. D., Amara, P., Madern, D. & Weik, M. (2007). J. Synchrotron Rad. 14, 84–91.
- Fuhrmann, C. N., Kelch, B. A., Ota, N. & Agard, D. A. (2004). J. Mol. Biol. 338, 999–1013.
- Garman, E. (2003). Curr. Opin. Struct. Biol. 13, 545–551.
- Garman, E. F. & McSweeney, S. M. (2007). J. Synchrotron Rad. 14, 1–3.
- Garman, E. & Nave, C. (2002). J. Synchrotron Rad. 9, 327–328.
- Glaeser, R., Facciotti, M., Walian, P., Rouhani, S., Holton, J., MacDowell, A., Celestre, R., Cambie, D. & Padmore, H. (2000). Biophys. J. 78, 3178–3185.
- Glaeser, R. M. (2008). J. Struct. Biol. 163, 271–276.
- Gonzalez, A. & Nave, C. (1994). Acta Cryst. D50, 874–877.
- Grabolle, M., Haumann, M., Müller, C., Liebisch, P. & Dau, H. (2006). J. Biol. Chem. 281, 4580–4588.
- Hanson, B. L., Harp, J. M., Kirschbaum, K., Schall, C. A., DeWitt, K., Howard, A., Pinkerton, A. A. & Bunick, G. J. (2002). J. Synchrotron Rad. 9, 375–381.
- Helliwell, J. R., Ealick, S., Doing, P., Irving, T. & Szebenyi, M. (1993). Acta Cryst. D49, 120–128.
- Holton, J. M. (2007). J. Synchrotron Rad. 14, 51–72.
- Howell, P. L. & Smith, G. D. (1992). J. Appl. Cryst. 25, 81–86.
- Hubbell, J. H. (1982). Int. J. Appl. Radiat. Isotopes, 33, 1269–1290.
- Hubbell, J. H. (2006). Phys. Med. Biol. 51, R245–R262.
- James, R. W. (1962). The Optical Principles of the Diffraction of X-rays: The Crystalline State, Vol. II. London: Bell & Hyman.
- Kahn, R., Fourme, R., Gadet, A., Janin, J., Dumas, C. & André, D. (1982). J. Appl. Cryst. 15, 330–337.
- Kauffmann, B., Weiss, M. S., Lamzin, V. S. & Schmidt, A. (2006). Structure, 14, 1099–1105.
- Kendrew, J. C., Dickerson, R. E., Strandberg, B. E., Hart, R. G., Davies, D. R., Phillips, D. C. & Shore, V. C. (1960). Nature (London), 185, 422.
- Kmetko, J., Husseini, N. S., Naides, M., Kalinin, Y. & Thorne, R. E. (2006). Acta Cryst. D62, 1030–1038.
- Kuller, A., Fleri, W., Bluhm, W. F., Smith, J. L., Westbrook, J. & Bourne, P. E. (2002). Trends Biochem. Sci. 27, 213–215.
- Leiros, H.-K. S., McSweeney, S. M. & Smalås, A. O. (2001). Acta Cryst. D57, 488–497.
- Leiros, H.-K. S., Timmins, J., Ravelli, R. B. G. & McSweeney, S. M. (2006). Acta Cryst. D62, 125–132.
- Li, J., Edwards, P. C., Burghammer, M., Villa, C. & Schertler, G. F. (2004). J. Mol. Biol. 343, 1409–1438.
- Lipson, H. & Langford, J. I., (2006). International Tables for Crystallography, Vol. C, 1st online ed., §6.2.4, p. 596. International Union of Crystallography.
- MacDowell, A. A. et al. (2004). J. Synchrotron Rad. 11, 447–455.
- Massover, W. H. (2007). J. Synchrotron Rad. 14, 116–127.
- Matthews, B. W. (1968). J. Mol. Biol. 33, 491.
- McGeehan, J., Ravelli, R. B. G., Murray, J. W., Owen, R. L., Cipriani, F., McSweeney, S., Weik, M. & Garman, E. F. (2009). J. Synchrotron Rad. 16, 163–172.
- McMaster, W. H., Del Grande, N. K., Mallett, J. H. & Hubbell, J. H. (1969). Compilation of X-ray Cross Sections. Report UCRL-50174, Lawrence Livermore National Laboratory, CA, USA.
- Meents, A., Wagner, A., Schneider, R., Pradervand, C., Pohl, E. & Schulze-Briese, C. (2007). Acta Cryst. D63, 302–309.
- Meitzner, G., Gardea-Torresdey, J., Parsons, J., Scott, S. L. & Deguns, E. W. (2005). Microchem. J. 81, 61–68.
- Moukhametzianov, R., Burghammer, M., Edwards, P. C., Petitdemange, S., Popov, D., Fransen, M., McMullan, G., Schertler, G. F. X. & Riekel, C. (2008). Acta Cryst. D64, 158–166.
- Murray, J. & Garman, E. (2002). J. Synchrotron Rad. 9, 347–354.
- Murray, J. W., Garman, E. F. & Ravelli, R. B. G. (2004). J. Appl. Cryst. 37, 513–522.
- Murray, J. W., Rudiño-Piñera, E., Owen, R. L., Grininger, M., Ravelli, R. B. G. & Garman, E. F. (2005). J. Synchrotron Rad. 12, 268–275.
- Myers, L. S. Jr (1973). In The Radiation Chemistry of Macromolecules, Vol. II, edited by M. Dole. New York: Academic Press.
- Nanao, M. H., Sheldrick, G. M. & Ravelli, R. B. G. (2005). Acta Cryst. D61, 1227–1237.
- Nave, C. & Garman, E. F. (2005). J. Synchrotron Rad. 12, 257–260.
- Nave, C. & Hill, M. A. (2005). J. Synchrotron Rad. 12, 299–303.
- Nelson, R., Sawaya, M. R., Balbirnie, M., Madsen, A. Ã., Riekel, C., Grothe, R. & Eisenberg, D. (2005). Nature (London), 435, 773–778.
- Newton, A. (1963). Radiation Effects on Organic Materials, edited by R. O. Bolt and J. G. Carroll. New York: Academic Press.
- Nukaga, M., Mayama, K., Hujer, A. M., Bonomo, R. A. & Knox, J. R. (2003). J. Mol. Biol. 328, 289–301.
- Oliéric, V., Ennifar, E., Meents, A., Fleurant, M., Besnard, C., Pattison, P., Schiltz, M., Schulze-Briese, C. & Dumas, P. (2007). Acta Cryst. D63, 759–768.
- O’Neill, P., Stevens, D. L. & Garman, E. (2002). J. Synchrotron Rad. 9, 329–332.
- Owen, R. L., Holton, J. M., Schulze-Briese, C. & Garman, E. F. (2009). J. Synchrotron Rad. 16, 143–151.
- Owen, R. L., Pritchard, M. & Garman, E. (2004). J. Appl. Cryst. 37, 1000–1003.
- Owen, R. L., Rudino-Pinera, E. & Garman, E. F. (2006). Proc. Natl Acad. Sci. 103, 4912–4917.
- Paithankar, K. S., Owen, R. L. & Garman, E. F. (2009). J. Synchrotron Rad. 16, 152–162.
- Petrik, N. G. & Kimmel, G. A. (2003). Phys. Rev. Lett. 90, 269–270.
- Petrik, N. G. & Kimmel, G. A. (2004). J. Chem. Phys. 121, 3736–3744.
- Polentarutti, M., Glazer, R. & Djinović Carugo, K. (2004). J. Appl. Cryst. 37, 319–324.
- Ravelli, R. B. G. & Garman, E. (2006). Curr. Opin. Struct. Biol. 16, 624–629.
- Ravelli, R. B. G., Leiros, H. K. S., Pan, B. C., Caffrey, M. & McSweeney, S. (2003). Structure, 11, 217–224.
- Ravelli, R. B. G. & McSweeney, S. M. (2000). Structure, 8, 315–328.
- Ravelli, R. B. G., Nanao, M. H., Lovering, A., White, S. & McSweeney, S. (2005). J. Synchrotron Rad. 12, 276–284.
- Roberts, B. R., Wood, Z. A., Jonsson, T. J., Poole, L. B. & Karplus, P. A. (2005). Protein Sci. 14, 2414–2420.
- Sawaya, M. R., Sambashivan, S., Nelson, R., Ivanova, M. I., Sievers, S. A., Apostol, M. I., Thompson, M. J., Balbirnie, M., Wiltzius, J. J., McFarlane, H. T., Madsen, A. Ø., Riekel, C. & Eisenberg, D. (2007). Nature (London), 447, 453–457.
- Schiltz, M. & Bricogne, G. (2007). J. Synchrotron Rad. 14, 34–42.
- Schulze-Briese, C., Wagner, A., Tomizaki, T. & Oetiker, M. (2005). J. Synchrotron Rad. 12, 261–267.
- Schuwirth, B. S., Borovinskaya, M. A., Hau, C. W., Zhang, W., Vila-Sanjurjo, A., Holton, J. M. & Cate, J. H. (2005). Science, 310, 827–834.
- Seltzer, S. M. (1993). Radiat. Res. 136, 147.
- Sliz, P., Harrison, S. & Rosenbaum, G. (2003). Structure, 11, 13–19.
- Snell, E. H., Bellamy, H. D., Rosenbaum, G. & van der Woerd, M. J. (2007). J. Synchrotron Rad. 14, 109–115.
- Southworth-Davies, R. J. & Garman, E. F. (2007). J. Synchrotron Rad. 14, 73–83.
- Southworth-Davies, R. J., Medina, M. A., Carmichael, I. & Garman, E. F. (2007). Structure, 15, 1531–1541.
- Standfuss, J., Xie, G., Edwards, P. C., Burghammer, M., Oprian, D. D. & Schertler, G. F. (2007). J. Mol. Biol. 372, 1179–1188.
- Teng, T. & Moffat, K. (2000). J. Synchrotron Rad. 7, 313–317.
- Teng, T.-Y. & Moffat, K. (2002). J. Synchrotron Rad. 9, 198–201.
- Weik, M., Bergès, J., Raves, M. L., Gros, P., McSweeney, S., Silman, I., Sussman, J. L., Houée-Levin, C. & Ravelli, R. B. G. (2002). J. Synchrotron Rad. 9, 342–346.
- Weik, M., Ravelli, R. B. G., Kryger, G., McSweeney, S., Raves, M. L., Harel, M., Gros, P., Silman, I., Kroon, J. & Sussman, J. L. (2000). Proc. Natl. Acad. Sci. USA, 97, 623–628.
- Weik, M., Ravelli, R. B. G., Silman, I., Sussman, J. L., Gros, P. & Kroon, J. (2001). Protein Sci. 10, 1953–1961.
- Wilson, A. J. C. (1949). Acta Cryst. 2, 318–321.
- Woolfson, M. M. (1970). An Introduction to X-ray Crystallography, 2nd ed. Cambridge University Press.
- Yano, J., Kern, J., Irrgang, K. D., Latimer, M. J., Bergmann, U., Glatzel, P., Pushkar, Y., Biesiadka, J., Loll, B., Sauer, K., Messinger, J., Zouni, A. & Yachandra, V. K. (2005). Proc. Natl. Acad. Sci. USA, 102, 12047–12052.
- Zagórsky, Z. P. (1999). Rad. Phys. Chem. 56, 559–565.
- Zwart, P. H., Banumathi, S., Dauter, M. & Dauter, Z. (2004). Acta Cryst. D60, 1958–1963.